Prevalence of blaOXA-10, blaCTX-M-3 and SHV Genes among ESBL-Producing Escherichia coli and Klebsiella pneumoniae Isolated from Clinical samples in Basra city, Iraq

Main Article Content

Ahmed Mshari
Najwa M. J. Abu-Mejdad
Khairallah A. S. Mohammed

Abstract

The current study was conducted to determine the prevalence of extended-spectrum β-lactamase (ESBL) in 78 drug-resistant clinical isolates (25 Klebsiella pneumoniae and 53 Escherichia coli strains) using phenotypic and molecular methods. The phenotypic method was performed using a double-disk synergy test (DDST), while the genotypic method screened for the blaSHV, blaCTX-M13U, and blaOXA-10 genes using specific primers. The phenotypic results showed that out of 53 tested strains of E. coli, 17 (32.07%) produced ESBL. Similarly, out of 25 tested strains of K. pneumoniae, 8 (32%) produced ESBL. Genotypic detection showed that in E. coli, the most abundant gene was SHV, present in 24 strains (45.28%), followed by blaOXA-10 in 23 strains (43.39%) and CTX-M-3 in 8 strains (15.09%). In K. pneumoniae, SHV was detected in 12 strains (48%), followed by OXA-10 and CTX-M-3, each found in 5 strains (20%).

Downloads

Download data is not yet available.

Article Details

How to Cite
Mshari, A., Abu-Mejdad, N. M. J. ., & Mohammed, K. A. S. . (2024). Prevalence of blaOXA-10, blaCTX-M-3 and SHV Genes among ESBL-Producing Escherichia coli and Klebsiella pneumoniae Isolated from Clinical samples in Basra city, Iraq. Journal of Asian Multicultural Research for Medical and Health Science Study, 5(1), 14-21. https://doi.org/10.47616/jamrmhss.v5i1.505
Section
Articles

References

Bajpai, V., Govindaswamy, A., Khurana, S., Batra, P., Aravinda, A., Katoch, O., Hasan, F., Malhotra, R., & Mathur, P. (2019). Phenotypic & genotypic profile of antimicrobial resistance in Pseudomonas species in hospitalized patients. The Indian Journal of Medical Research, 149(2), 216–221.

Bush, K., & Bradford, P. A. (2019). Interplay between β-lactamases and new β-lactamase inhibitors. Nature Reviews Microbiology, 17(5), 295–306. https://doi.org/10.1038/s41579-019-0159-8

Castanheira, M., Simner, P. J., & Bradford, P. A. (2021). Extended-spectrum β-lactamases: an update on their characteristics, epidemiology and detection. JAC-Antimicrobial Resistance, 3(3). https://doi.org/10.1093/jacamr/dlab092

De Rosa, M., Verdino, A., Soriente, A., & Marabotti, A. (2021). The Odd Couple(s): An Overview of Beta-Lactam Antibiotics Bearing More Than One Pharmacophoric Group. International Journal of Molecular Sciences 2021, Vol. 22, Page 617, 22(2), 617. https://doi.org/10.3390/ijms22020617

Ejikeugwu, C., Nworie, O., Saki, M., Al-Dahmoshi, H. O. M., Al-Khafaji, N. S. K., Ezeador, C., Nwakaeze, E., Eze, P., Oni, E., Obi, C., Iroha, I., Esimone, C., & Adikwu, M. U. (2021). Metallo-β-lactamase and AmpC genes in Escherichia coli, Klebsiella pneumoniae, and Pseudomonas aeruginosa isolates from abattoir and poultry origin in Nigeria. BMC Microbiology, 21(1). https://doi.org/10.1186/s12866-021-02179-1

Firth, N., Jensen, S. O., Kwong, S. M., Skurray, R. A., & Ramsay, J. P. (2018). Staphylococcal Plasmids, Transposable and Integrative Elements. Microbiology Spectrum, 6(6).

Gales, A. C., Stone, G., Sahm, D. F., Wise, M. G., & Utt, E. (2023). Incidence of ESBLs and carbapenemases among Enterobacterales and carbapenemases in Pseudomonas aeruginosa isolates collected globally: results from ATLAS 2017-2019. J Antimicrob Chemother, 78, 1606–1615. https://doi.org/10.1093/jac/dkad127

Hasan, D. L., Khalid, H. M., & Mero, W. M. S. (2022). Phenotypic and Molecular Study of Extended-Spectrum β-lactamases Producing Enterobacteriaceae from Urinary Tract Infection in Zakho city, Kurdistan Region/Iraq. Academic Journal of Nawroz University, 11(3), 305–313. https://doi.org/10.25007/ajnu.v11n3a1447

Jarlier, V., Nicolas, M. H., Fournier, G., & Philippon, A. (1988). Extended broad-spectrum beta-lactamases conferring transferable resistance to newer beta-lactam agents in Enterobacteriaceae: hospital prevalence and susceptibility patterns. Reviews of Infectious Diseases, 10(4), 867–878. https://doi.org/10.1093/clinids/10.4.867

Jiang, X., Zhang, Z., Li, M., Zhou, D., Ruan, F., & Lu, Y. (2006). Detection of Extended-Spectrum β-Lactamases in Clinical Isolates of Pseudomonas aeruginosa. Antimicrobial Agents and Chemotherapy, 50(9), 2990. https://doi.org/10.1128/aac.01511-05

Kazemian, H., Heidari, H., Ghanavati, R., Ghafourian, S., Yazdani, F., Sadeghifard, N., Valadbeigi, H., Maleki, A., & Pakzad, I. (2019). Phenotypic and Genotypic Characterization of ESBL-, AmpC-, and Carbapenemase-Producing Klebsiella pneumoniae and Escherichia coli Isolates. Medical Principles and Practice : International Journal of the Kuwait University, Health Science Centre, 28(6), 547–551. https://doi.org/10.1159/000500311

Lima, L. M., Silva, B. N. M. da, Barbosa, G., & Barreiro, E. J. (2020). β-lactam antibiotics: An overview from a medicinal chemistry perspective. European Journal of Medicinal Chemistry, 208, 112829.

Mahazu, S., Prah, I., Ota, Y., Hayashi, T., Nukui, Y., Suzuki, M., Hoshino, Y., Akeda, Y., Suzuki, T., Ishino, T., Ablordey, A., & Saito, R. (2022). Klebsiella Species and Enterobacter cloacae Isolates Harboring bla OXA-181 and bla OXA-48 : Resistome, Fitness Cost, and Plasmid Stability . Microbiology Spectrum, 10(6).

Mshari, A., Mohammed, K. A. S., & Abu-Mejdad, N. (2024). Antimicrobial susceptibility of bacterial clinical specimens isolated from Al-Sader Teaching Hospital in Basra-Iraq. AsPac J. Mol. Biol. Biotechnol, 32(1), 76–84.

Oueslati, S., Nordmann, P., & Poirel, L. (2015). Heterogeneous hydrolytic features for OXA-48-like β-lactamases. Journal of Antimicrobial Chemotherapy, 70(4), 1059–1063. https://doi.org/10.1093/jac/dku524

Poirel, L., Naas, T., & Nordmann, P. (2010). Diversity, epidemiology, and genetics of class D β-lactamases. Antimicrobial Agents and Chemotherapy, 54(1), 24–38. https://doi.org/10.1128/aac.01512-08

Rajguru, M., Sande, S., & Khekade, A. P. (2023). Metallo β- lactamase producing pseudomonas aeruginosa: a worrisome situation to handle. Egyptian Pharmaceutical Journal, 22(3), 337–343.

Rima, M., Oueslati, S., Cotelon, G., Creton, E., Bonnin, R. A., Dortet, L., Iorga, B. I., & Naas, T. (2024). Role of amino acid 159 in carbapenem and temocillin hydrolysis of OXA-933, a novel OXA-48 variant. Antimicrobial Agents and Chemotherapy.

Salvia, T., Dolma, K. G., Dhakal, O. P., Khandelwal, B., & Singh, L. S. (2022). Phenotypic Detection of ESBL, AmpC, MBL, and Their Co-occurrence among MDR Enterobacteriaceae Isolates. Journal of Laboratory Physicians, 14(3), 329–335. https://doi.org/10.1055/s-0042-1744239

Singh, A., Shahid, M., Sami, H., Shadab, M., & Khan, H. M. (2022). Class A Type Β-Lactamases. Beta-Lactam Resistance in Gram-Negative Bacteria: Threats and Challenges, 35–80. https://doi.org/10.1007/978-981-16-9097-6_4

Tooke, C. L., Hinchliffe, P., Bragginton, E. C., Colenso, C. K., Hirvonen, V. H. A., Takebayashi, Y., & Spencer, J. (2019). β-Lactamases and β-Lactamase Inhibitors in the 21st Century. Journal of Molecular Biology, 431(18), 3472–3500. https://doi.org/10.1016/j.jmb.2019.04.002

Verma, S., Kalyan, R. K., Gupta, P., Danish Khan, M., & Venkatesh, V. (2023). Molecular Characterization of Extended Spectrum β-Lactamase Producing Escherichia coli and Klebsiella pneumoniae Isolates and Their Antibiotic Resistance Profile in Health Care-Associated Urinary Tract Infections in North India. J Lab Physicians, 15, 194–201. https://doi.org/10.1055/s-0042-1757416

Yoon, E. J., & Jeong, S. H. (2021). Class D β-lactamases. Journal of Antimicrobial Chemotherapy, 76(4), 836–864. https://doi.org/10.1093/jac/dkaa513